A Two-Stage Model for Wearable Device Data

Jiawei Bai,1,∗ Yifei Sun,1 Jennifer A. Schrack, 2 Ciprian M. Crainiceanu,1 and Mei-Cheng Wang1

1Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland 21205, U.S.A.
2Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland 21205, U.S.A.
*email: jbai@jhsph.edu

SUMMARY. Recent advances of wearable computing technology have allowed continuous health monitoring in large observational studies and clinical trials. Examples of data collected by wearable devices include minute-by-minute physical activity proxies measured by accelerometers or heart rate. The analysis of data generated by wearable devices has so far been quite limited to crude summaries, for example, the mean activity count over the day. To better utilize the full data and account for the dynamics of activity level in the time domain, we introduce a two-stage regression model for the minute-by-minute physical activity proxy data. The model allows for both time-varying parameters and time-invariant parameters, which helps capture both the transition dynamics between active/inactive periods (Stage 1) and the activity intensity dynamics during active periods (Stage 2). The approach extends methods developed for zero-inflated Poisson data to account for the high-dimensionality and time-dependence of the high density data generated by wearable devices. Methods are motivated by and applied to the Baltimore Longitudinal Study of Aging.

KEY WORDS: Accelerometer; Actigraphy; Actiheart; Physical activity; Semi-parametric; Two-stage model.

1. Background

Recent advances of wearable computing technology have allowed continuous health monitoring in large observational studies and clinical trials. Activity trackers and heart rate monitors are two such devices that are widely used. Activity trackers are used to objectively measure the level and timing of physical activities. They have been used in many scientific studies to supplement or even replace self-reported questionnaires that can be subject to large measurement error and uncontrollable biases (Neilson et al., 2008). Two comprehensive reviews of such studies were provided by John and Freedson (2012) and Yang and Hsu (2010). Heart rate monitors have an even longer history in health studies (see (Terbizan et al., 2002)), because heart rate is directly related to the physiology of human body and is used extensively to study energy expenditure.

Actiheart (Cambridge Neurotechnology Ltd, Papworth, UK) was one of the earliest wearable devices that combined heart rate and motion sensing (Brage et al., 2005). Other integrated multi-sensor trackers have become widely available over the past 5 years both in research and the consumer market (Bai et al., 2016). Wearable device data are sampled at a constant rate set by the manufacturer or user. Modern accelerometers can provide densely sampled tri-axial raw accelerometry data, or uni-axial summaries of activity level within various epochs. The raw accelerometry data consist of three time series corresponding to the sensor’s instantaneous acceleration along three orthogonal directions, commonly with 10–100 samples per second on each axis. The raw accelerometry data provide high resolution information on the changes of acceleration, and are standard measurements in modern accelerometry studies. Another type of data is the uni-axial summary data in epochs (in second, minute, etc.), which summarizes information about the intensity of activity from the raw data. Commonly used summary data include various versions of activity count, which are provided by the accelerometer manufacturer, and open-source metrics such as the Activity Index (Bai et al., 2016) and Mean Amplitude Deviation (Väää-Yypää et al., 2015). This reduced format of data is often preferred in large epidemiological studies, as the size and complexity of the data are reduced while the resulting summaries are considered to be informative enough to describe the overall trajectory of physical activity.

In this article, we will focus on the summary data aggregated at the minute level, which results in 1440 observations per day or more than 10,000 per week. The data structure is of the type \(Y_j(t), \) where \(i(= 1, 2, \ldots, n)\) denotes subject, \(j(= 1, 2, \ldots, J)\) denotes the day and \(t(= 1, 2, \ldots, T_j)\) denotes the time of day. The measurement, \(Y_j(t),\) is usually a non-negative number with various interpretations, depending on the application. For activity trackers, \(Y_j(t)\) is the activity counts or number of steps, which are used as proxies of the activity intensity.

Although such data have been collected in many public health and medical studies, models and analyses are limited to crude summaries, such as the total activity count over a 24-hour period. Despite concerns about the loss of information during the summarization process, only a few analyses utilized the full data. Schrack et al. (2014), Goldsmith et al. (2015), and Xiao et al. (2015) have investigated the association between minute-by-minute activity counts and health covariates, via various methods including functional
regression and bivariate smoothing. Li et al. (2014, 2015) studied the dynamics of 5-minute energy expenditure level (estimated by accelerometers) using functional principal component analysis and penalized splines. Shou et al. (2015) analyzed activity data using principal component analysis to extract the main patterns of variation in activity data.

Our goal is to provide a new and systematic methodology to assess the effects of covariates on both the incidence rate and level of physical activity. Although our motivating data are minute-by-minute activity counts (AC), the proposed model can easily be used in other applications where data are densely sampled curves and the outcome is a mixture between a point mass at zero and a continuous positive distribution.

In Section 2, we introduce a two-stage regression model for the transition between active/inactive periods (stage 1) and activity intensity during active periods (stage 2). In Section 3, we describe the estimation method and provide the asymptotic properties of the estimators. A simulation study is presented in Section 4 to demonstrate the performance of the estimators. Methods are applied in Section 5 to the Baltimore Longitudinal Study of Aging (BLSA) to quantify the effect of age, gender and body mass index (BMI) on daily activity. The article will conclude with a discussion in Section 6.

2. Two-Stage Model

2.1. Notation

We consider the case when the data are collected from a group of subjects (i = 1, 2, ..., n) during one day (J = 1) for a fixed number of time units (Tj = T). Assume the measurement Y(t) is observed at every time point t = 1, ..., T. We define the time-dependent binary process A(t), which is an event indicator (e.g., whether the subject was active) at time t. This can be obtained through direct observation or by thresholding Y(t); for example, A(t) = 1 if and only if Y(t) > 0. If v is the counting measure on [1, 2, ..., T] then the total number of events can be written as \(\int_0^T A(u) dv(u) \), and the total volume of activity proxy from [0, T] is \(\int_0^T Y(u) A(u) dv(u) \).

Let X(t) denote the vector of covariates, which can include both time-dependent factors, such as the day time indicator or the average of Y(t) in a past window, and time-independent factors such as baseline age, gender. We assume that the observed data \(\{A_i(t), Y_i(t), X_i(t); t = 1, ..., T, i = 1, ..., n\} \) are i.i.d. replicates of \(\{A(t), Y(t), X(t); t = 1, ..., T\} \), where i is the subject index.

2.2. Model Framework

Even though wearable computing data are measured over multiple days, in this article, we will focus on modeling one day of data per subject. This simplifies the modeling strategy by avoiding the between-day correlation of physical activity within-subject. In the data analysis of this article, we selected one day of data for each subject with the highest total activity count. This can also be achieved by calculating the minute-specific median or mean activity count over multiple activity days. Our analysis indicated that the result did not change significantly with the choice of data reduction. In future studies, we plan to address the problem of having multiple days of data per subject. Figure 1 illustrates our conceptual model in the context of activity tracking. For simplicity, we only show a six-minute segment of the data. The top panel contains AC, Y(t), with no activity (AC= 0) at minutes 1, 2, and 5. The middle panel contains A(t), the process indicating whether AC is greater than 0 at time t. For example, when t = 3, 4, or 6, A(t) = 1 and \(\int_0^T A(u) dv(u) \) increases by 1, indicating the subject was active during that particular time interval. Thus, \(A_i(t) = I\{Y_i(t) > 0\} \), where \(I\{\cdot\} \) is the indicator function. We are interested in quantifying the association between the covariates X(t) and the processes A(t) and Y(t).

We further separate X(t) into two groups of covariates \(Z_i(t) \) and \(H_i(t) \), which correspond to covariates with time-invariant effects (which do not vary by time) and covariates with time-varying effects. Separating \(Z_i(t) \) and \(H_i(t) \) is necessary because the interpretation of their effects is rather different.

In our setting, \(A_i(t) \) is observed at each time point \(t \in \{1, 2, ..., T\} \) and \(T \) is relatively large (e.g., \(T = 1440 \) for one day of data sampled at the minute level). The notation and structure of the data are similar to those used for continuous marked processes (Pinsky and Karlin, 2010). However, the modeling strategies we use here are different, because wearable computing data are very large and discretized. Our data could also be analyzed using a standard zero-inflated Poisson count model, but such an approach would be quite involved and relatively hard to implement. Therefore, we choose to present an alternative approach, a two-stage model.

2.3. Model Specification

To assess the effect of covariates \(X_i(t) \) on \(A_i(t) \) and \(Y_i(t) \), we first separate \(X_i(t) \) into \(Z_i(t) \) and \(H_i(t) \) by formally defining \(X_i(t) = \{1, Z_i(t)^\top, H_i(t)^\top\} \). We then propose a two-stage model: first stage for \(A_i(t) \) and second stage for \(Y_i(t) \) conditioning on \(A_i(t) = 1 \). For simplicity, the notation and interpretation correspond to the case of one vector of time-independent and one vector of time-dependent predictors, but our methodology is not limited by this assumption. First, for each \(t = 1, 2, ..., T \)

\[
\text{logitP}(A_i(t) = 1 | Z_i(t), H_i(t)) = \beta_0(t) + Z_i(t)^\top \beta_1 + H_i(t)^\top \beta_2(t).
\]

Figure 1. Illustration of conceptual model structure. Outcome \(Y_i(t) \) is the activity intensity data, observed only at minute \(t = 3, 4, 6 \) when \(A_i(t) = 1 \). \(\int_0^T A(u) dv(u) \) is the total active time up to time \(t \). \(X_i(t) \) are covariates which affect both \(Y_i(t) \) and \(A_i(t) \).
At each t, the model assumes that there is a time-varying intercept $\beta_0(t)$ and p_2-dimensional coefficient $\beta_2(t)$, where p_2 is the number of covariates, $H(t)$, that have time-dependent effects. There is also a p_1-dimensional time-invariant parameter β_1 across all $t \in [1, T]$, where p_1 is the number of covariates that have time-independent effects. As the time-invariant parameter stays the same across t, we also call it a structural parameter. These two terms will be used interchangeably in the remaining of this article. The Stage 1 parameters have standard interpretations for logistic regression coefficients.

For the second stage, conditioning on $A(t) = 1$, we consider the following semi-parametric model of $Y(t)$

$$
\log[Y(t)] = \gamma_0(t) + Z_i(t)^T \gamma_1 + H_i(t)^T \gamma_2 + \epsilon_i(t),
$$

where $\mathbb{E}[\epsilon_i(t)] = 0$, though we make no assumptions about the correlations of $\epsilon_i(t)$ across t within i.

In Model (2), we also have the time-varying regression coefficient $\gamma_2(t)$, as well as a vector of structural parameter γ_1 across all t, with dimensions p_2 and p_1, respectively. In addition, $\epsilon_i(t)$ is a zero-mean random error with unspecified distribution. The log transformation was applied to $Y(t) > 0$ to account for the notoriously heavy right skew of activity counts data (Schrack et al., 2014; Xiao et al., 2015). The interpretations of Stage 2 parameters are standard as well. The regression effect parameter of $Z_i(t)$ (or $H_i(t)$) on $Y_i(t)$ is the conditional treatment effect, because our model regresses $Y_i(t)$ by conditioning on $A_i(t) = 1$. More precisely, this is the average effect of $Z_i(t)$ (or $H_i(t)$) on $Y_i(t)$ in the subgroup of the population who are active at time t. Interestingly, the effect of $Z_i(t)$ on $Y_i(t)$ conditioning on $A_i(t) = 1$ can also be interpreted as the (composite) treatment effect of $Z_i(t)$ on the product of $Y_i(t)$ and $A_i(t)$, or $Y_i(t) \times A_i(t)$.

Allowing $\beta_2(t)$ and $\gamma_2(t)$ to vary by time is important in practice, as in many applications the time-dependent covariates $H_i(t)$ may have different effects during the day. For example, if $H_i(t)$ is the value of glucose level for subject i at time t, one could expect different association profiles with the subject’s physical activity during day and night.

3. Estimation

In this section, we propose an estimating procedure for the unknown parameters in the two-stage model. A reasonable approach could be to use methods that combine fixed effects parameters and flexible spline models for the time-varying parameters. Indeed, in theory, this is a reasonable approach, but in practice, we have been unable to implement it. The problem is that such a model would require fitting one joint model to a very large data set, which makes implementation impractical. Instead, we have used a divide and conquer approach, in which we fit minute-specific models to obtain unbiased, but highly variable estimates of the time-invariant and time-variant coefficients and then use smoothing techniques on these coefficients. This approach is much easier to implement and use in practice and we provide both theoretical and numerical evidence that it performs well. Specifically, the estimation starts with treating the structural parameters β_1 and γ_1 as if they were time-varying, that is, $\hat{\beta}_1(t)$ and $\hat{\gamma}_1(t)$. We then estimate $\hat{\beta}_1(t)$ and $\hat{\gamma}_1(t)$, along with all the other time-varying parameters, and obtain the estimated $\hat{\beta}_1(t)$ and $\hat{\gamma}_1(t)$, for all $t = 1, 2, \ldots, T$. To simplify notations we define the p-dimensional $(p = p_1 + p_2 + 1)$ parameters $\beta(t) = (\beta_0(t), \beta_1(t)^T, \beta_2(t)^T)^T$ and $\gamma(t) = (\gamma_0(t), \gamma_1(t)^T, \gamma_2(t)^T)^T$, with the covariates $X_i(t) = [1, Z_i(t)^T, H_i(t)^T]^T$ at each t.

The Stage 1 parameter $\beta(t)$ can be estimated by solving the $p \times 1$ score equations $U_{1t}^T[\beta(t)] = 0$, which are defined as

$$
U_{1t}^T[\beta(t)] = 1 \sum_{i=1}^n U_{1t}^T[\beta(t)] = 1 \sum_{i=1}^n X_i(t)[A_i(t) - p(X_i(t); \beta(t))],
$$

and $p(X_i(t); \beta(t))$ is the probability of being active at t given the covariates $X_i(t)$, that is, $p\{X_i(t); \beta(t)\} = \exp[X_i(t)^T\beta(t)]/[1 + \exp[X_i(t)^T\beta(t)]]$. We denote the solution of $U_{1t}^T[\beta(t)] = 0$ as $\hat{\beta}(t) = [\hat{\beta}_0(t), \hat{\beta}_1(t)^T, \hat{\beta}_2(t)^T]^T$. It is easy to show that for each t, the random vector $\sqrt{n}[\hat{\beta}(t) - \beta(t)]$ converges weakly to a multivariate normal random vector as $n \to \infty$.

To estimate the Stage 2 parameter $\gamma(t)$, we use the equality $\mathbb{E}[\log(Y(t)) - X_i(t)^T\gamma(t) \mid A_i(t) = 1] = 0$ to construct the following $p \times 1$ estimation functions,

$$
U_{2t}^T[\gamma(t)] = 1 \sum_{i=1}^n U_{2t}^T[\gamma(t)] = 1 \sum_{i=1}^n X_i(t)A_i(t) \left[\log(Y_i(t)) - X_i(t)^T\gamma(t)\right].
$$

We can solve the estimating equation $U_{2t}^T[\gamma(t)] = 0$ to obtain the estimated $\hat{\gamma}(t)$. The estimating equations (4) are inspired by the expected value of the “total magnitude of activity over time,” or $\mathbb{E}[Y_i(t) \times A_i(t) \mid X_i(t)] = \exp[X_i(t)^T\gamma(t)]p(X_i(t); \beta(t))$. This quantity combines information from both stages and shows how the total activity is accumulated.

Recall that β_1 and γ_1 were estimated as time-varying; we now propose two methods to combine information across $t = 1, 2, \ldots, T$ to obtain the estimates of β_1 and γ_1. Define

$$
U_t(\beta_1, \gamma_1) = U_{1t}^T[\beta_0(t), \beta_1, \beta_2(t)^T]U_{1t}^T[\beta_0(t), \beta_1, \beta_2(t)^T],
$$

$$
U_{1t}^T[\beta_0(T), \beta_1, \beta_2(T)^T], U_{2t}^T[\gamma_0(t), \gamma_1, \gamma_2(T)^T],
$$

where $U_{1t}\{}$ and $U_{2t}\{}$ follow similar formulations as Equations (3) and (4) without treating β_1 and γ_1 as time-varying. We then plug in the estimated $\hat{\beta}_1(t)$, $\hat{\beta}_2(t)$, $\hat{\gamma}_0(t)$ and $\hat{\gamma}_2(t)$ to form the profile estimation function

$$
\hat{U}_t(\beta_1, \gamma_1) = \left[U_{1t}^T[\hat{\beta}_0(t), \beta_1, \hat{\beta}_2(t)^T]U_{1t}^T[\hat{\beta}_0(t), \beta_1, \hat{\beta}_2(t)^T],
$$

$$
U_{1t}^T[\hat{\beta}_0(T), \beta_1, \hat{\beta}_2(T)^T], U_{2t}^T[\hat{\gamma}_0(t), \gamma_1, \hat{\gamma}_2(T)^T],
$$

The first method is to consider a weighted average of the profile estimating functions. Specifically, let W_t be a $2p_1 \times$
We show in Web Appendix A that under regularity conditions, \(\sqrt{n} \) computed via the minimization procedure augmenting data information from the \(2T \) estimation equations. Denoting the true coefficients by \(\beta_1^0 \) and \(\gamma_1^0 \), it is shown in Web Appendix A that, \(\sqrt{n} \) converges in distribution to a zero mean normal random vector.

The second method combines information across time points, using the approach of the Generalized Method of Moments (GMM) (Hansen, 1982), and estimates the regression parameters by minimizing a “general distance” from the estimation functions to zero. Define the weight matrix with \(2T \times 2T \) dimension, the estimators \((\hat{\beta}_1^R, \hat{\gamma}_1^R) \) is computed via the minimization procedure

\[
(\hat{\beta}_1^R, \hat{\gamma}_1^R) = \arg \min_{(\beta_1, \gamma_1)} \left\{ \frac{1}{n} \sum_{i=1}^n \hat{U}_i(\beta_1, \gamma_1) \right\} = \arg \min_{(\beta_1, \gamma_1)} \left\{ \frac{1}{n} \sum_{i=1}^n \hat{U}_i(\beta_1, \gamma_1) \right\}.
\]

(5)

We show in Web Appendix A that \(\sqrt{n} \) converges in distribution to a zero mean normal random vector.

In practice, the weight matrices \(W_1 \) and \(W_2 \) are pre-specified by investigators, and the estimation efficiency may vary when using different weights. According to the GMM theory, the matrix \(W_2 = \Sigma^{-1} \), where \(\Sigma \) is defined in Web Appendix A, yields the most asymptotically efficient estimator in the class of all GMM estimators. Moreover, if we set \(W_1 = D(\hat{\beta}_1^R, \gamma_1^R)W_2, \) the two approaches will be asymptotically equivalent, where \(D(\beta_1^T, \gamma_1^T) \) is defined in Web Appendix A. However, even if the weights are not optimal, combining information across time points is expected to substantially improve the performance of estimators compared to using a single time point.

Note that both methods are proposed to address the over-identification of the estimating equations, by borrowing information across \(t \) to improve the estimation efficiency of structural parameters \(\beta_1 \) and \(\gamma_1 \). However, when \(T \) is large (i.e., \(T = 1440 \) for minute-by-minute activity count), the direct application of GMM could be computationally challenging when minimizing a function with \(2(1 + p_2)T + 2p_1 \) parameters. To solve this problem, we substitute the unknown parameter \((\beta_0(t), y_0(t), \beta_2(t), \gamma_2(t)) \) in the estimating equations with their estimate from regression models at each time point \(t \), and obtain \(2pT \) estimating equations with \(2p_1 \) parameters. GMM is then used to combine the estimating equations. In practice, it may be difficult to estimate or calculate the optimal weight matrix \(W_2 = \Sigma^{-1} \) (e.g., \(T \) is too large and inversion of \(\Sigma \) is computationally expensive). In such situations we can consider the other method, which directly combines the estimating equations using a pre-specified weight matrix \(W_1 \). Note that, in general, for arbitrary \(W_1 \) and \(W_2 \), either approach

\[\begin{array}{c}
\text{Figure 2. Comparison of true coefficient curves (solid black), mean estimated coefficient curves for all time-varying coefficients (dotted gray), and estimated coefficient curves (solid gray) when } N = 600, T = 600. \text{ Estimates of the time-invariant parameters using weighted estimation equation and GMM are displayed separately.}
\end{array}\]
could be more efficient; however, with \(W_1 = D(\beta_1^T, \gamma_0^T)^T W_2 \), the two approaches are asymptotically equivalent.

4. Simulation Study

We demonstrate the performance of our method via a simulation study, with the data generating mechanism inspired by real-world accelerometry data. The simulation was conducted in 4 scenarios, each with different sample size \((N = 300 \text{ or } 600)\) and/or time span \((T = 300 \text{ or } 600)\).

For each scenario we simulated \(R = 300 \) datasets starting with \(A_i(t) \) \((i = 1, 2, \ldots, N)\) according to the model

\[
\logit \mathbb{P}[A_i(t) = 1 \mid Z_i, H_i(t)] = \beta_0(t) + Z_i \beta_1 + H_i(t) \beta_2(t). \tag{6}
\]

For each \(t = 1, 2, \ldots, T \), we let \(\beta_0(t) = \sin(2\pi t/T) + 0.5 \), \(\beta_1 = 0.2 \), \(\beta_2(t) = 0.2 - \frac{1}{2} \left\{ \sin(2\pi t/T) - \cos(2\pi t/T) \right\} \) (black solid curves in panels a, b1, b2, and c of Figure 2). The scalar predictors in Model (6) were simulated for each curve in panels d, e1, e2, and f of Figure 2; \(\phi_0(\cdot) \) was the probability density function of the normal distribution \(N(0, 1.5) \). Data were then generated as \(Y_i(t) = \exp \left\{ \gamma_0(t) + Z_i \gamma_1 + H_i(t) \gamma_2(t) + \epsilon_i(t) \right\} \), where for each \(i \), \(\epsilon_i(t) \) followed a multivariate normal distribution with mean \(0 \) and the same \(T \)-dimensional correlation matrix \(R \) as in Stage 1.

To quantify estimation accuracy, we calculated the average absolute bias and mean integrated square error (MISE) at every \(t \). If \(\hat{\eta}_r(t) \) is the estimator of the true curve \(\eta(t) \) using the \(r \)th simulated data, then the average absolute bias for this coefficient at time \(t \) was defined as

\[
\frac{1}{R} \sum_{r=1}^{R} |\hat{\eta}_r(t) - \hat{\eta}_r(t)|,
\]

and the mean integrated square error MISE was defined as

\[
\frac{1}{R} \sum_{r=1}^{R} \sum_{t=1}^{T} (\eta(t) - \hat{\eta}_r(t))^2.
\]

Figure 3. Average bias and average coverage rate for each parameter with \(N = 600 \) and \(T = 600 \). The black curves depicted the average bias at each \(t \) for each parameter, while the corresponding average coverage rates at each \(t \) are displayed as light gray vertical bars below. Estimates of the time-invariant parameters using weighted estimation equation and GMM are displayed separately.
value) at every t. Figure 3 provides a visual comparison between the average absolute bias (black curves) and the average coverage rate (light gray vertical bars) in the case when $N = 600$, $T = 600$. The average absolute bias for all coefficients remains small although varying slightly with t. The coverage rates of all coefficients in both stages were around 0.95. For the estimation of β_1 and γ_1, the weighted estimation equation and GMM have inseparable performance according to panels b1, b2, e1, and e2, both in terms of bias and confidence interval coverage rate. Figure 2 provides a comparison between the true coefficient curves (solid black), the mean estimated coefficient curves (dotted gray) and the estimated coefficient curves (solid gray) when $N = 600$, $T = 600$. The true and mean estimated coefficient curves are in good agreement for all coefficients and all time points t. The estimated coefficient curves exhibit a roughly constant variability across t around the true parameters.

Table 1 provides MISE and average coverage rate across t, while using either weighted estimation equation or GMM to estimate the time-invariant parameters. When holding T constant and increasing the sample size N from 300 to 600, MISE drops noticeably (by about a half). When holding N constant and increasing T from 300 to 600, MISE of time-varying coefficients remains about the same while that of time-invariant coefficients decreases substantially. On the other hand, the coverage rate always remains close to 0.95 in all four of our scenarios. The weighted estimation equation method exhibited smaller bias but better coverage rate than GMM when estimating β_1 and γ_1.

Table 1

<table>
<thead>
<tr>
<th>N</th>
<th>T</th>
<th>Method</th>
<th>MISE</th>
<th>$\beta_0(t)$</th>
<th>β_1</th>
<th>$\beta_2(t)$</th>
<th>$\gamma_0(t)$</th>
<th>γ_1</th>
<th>$\gamma_2(t)$</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>300</td>
<td>W/t EE</td>
<td>MISE</td>
<td>3.9×10^{-2}</td>
<td>6.5×10^{-4}</td>
<td>1.7×10^{-2}</td>
<td>1.3×10^{-2}</td>
<td>3.2×10^{-4}</td>
<td>5.2×10^{-3}</td>
<td>95.6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.9×10^{-2}</td>
<td>4.6×10^{-4}</td>
<td>1.7×10^{-2}</td>
<td>1.3×10^{-2}</td>
<td>1.6×10^{-4}</td>
<td>5.2×10^{-3}</td>
<td>95.6%</td>
</tr>
</tbody>
</table>

5. Application

The Baltimore Longitudinal Study of Aging (BLSA), funded and operated by the National Institute of Aging (NIA), is a study of normative human aging established in 1958 and continuing to this day. Briefly, BLSA continuously enrolls community volunteers as subjects who pass a series of health and functional evaluations. All participants are followed for life and visited every one to four years depending on age. More detailed description of the study could be found in (Ferrucci, 2008). The sample for the current study consists of men and women who underwent a physical examination, health history, and comprehensive energy expenditure testing during their visit between September 2007 and August 2015. The participants were admitted to the Clinical Research Branch unit of the National Institute on Aging for three days of testing. Height and weight were assessed in light clothing using a stadiometer and calibrated scale, respectively. Date of birth (age) was derived from a health history interview conducted by trained technicians. On the last day of the visit, participants were asked to wear the Actiheart (CamNtech Ltd, Papworth, UK) device attached on the chest using two standard electrodes. The device collected both heart rate and...
A Two-Stage Model

activity counts in one-minute epochs for the subsequent seven days in the free-living environment, and was returned to NIA via FedEx.

The data used in this article were collected from 878 participants who had at least 3 full days of monitoring of their physical activity. More specifically, the data for each subject are minute-by-minute time series of Activity Count (AC). More intense activity tends to correspond to higher AC, at least as measured at the chest level. An AC value of 0 count corresponds to no activity detected. We start by denoting the observed AC of subject \(i\) \((i = 1, 2, \ldots, I)\) during the \(t\)th minute of day \(d\) \((d = 1, 2, \ldots, D_i)\) by \(Y_{id}^0(t)\), \(t = 1, 2, \ldots, 1440\).

In this data analysis, we only included the most active day (in terms of daily average AC) during each visit for each subject. Specifically, we defined \(Y_i(t) = Y_{id}^0(t)\) where \(d^* = \arg\max_{d \in \{1, 2, \ldots, D_i\}} \left[\sum_{t=0}^{T} Y_{id}^0(t) \right]\) for each subject \(i\) at time \(t\). To these data, we apply the two-stage model described in Section 2 and investigate the association between demographic factors and level of activity in the past one hour and current level of activity at each time of day. The demographic factors in our analysis were time-independent: age (centered at 70), gender (male as 1) and BMI (centered at 27). The minute by minute heart rate \(H_i(t)\) (centered at 72) was included as time-dependent covariates. These covariates are basic demographic variables which might only partially account for the population heterogeneity of baseline physical activity. There are many other factors that might affect the baseline physical activity, such as the fitness level, seasonality, geographical location and so on. We only included basic demographics and heart rate to keep this section compact and focus on illustrating application of the two-stage model. We start with modeling all coefficients as time-varying.

Figure 4 presents the estimated coefficients of the two-stage model applied to BLSA. The first two rows of the figure depict the coefficient curves at each time \(t\) for the Stage 1 model, while the next two rows display the estimated coefficients for the Stage 2 model. The solid and dotted curves provide LOWESS smoothers for the estimated coefficients. The light gray shades surrounding the estimated coefficients are pointwise bootstrapped 95% confidence bands, which were obtained from LOWESS smoothed coefficients estimated using bootstrapped samples. Figure 4a and f illustrate the pattern of the intercept for Stage 1 and 2 models, respectively. Figure 4a indicates that, on average, a 70-year old woman with a BMI of 27 and heart rate of 72 is less likely to be active during the night (6 p.m–8 a.m), but roughly maintains a 60% probability of being active during the daytime from 8 a.m to 8 p.m. Figure 4f complements Figure 4a, suggesting that if the same group of women are active during daytime.

![Figure 4](figure.png)

Figure 4. Estimated covariate coefficients of Stage 1 and 2 models. Solid curves depict LOWESS smoothed coefficients of the Stage 1 model, while light gray shadows stand for pointwise bootstrapped 95% confidence interval. Dotted curves and the surrounding light gray shadows follow the same illustration, but for Stage 2 model.
then the intensity of their activity declines, on average, starting from 12. Figure 4b and g display the time-varying Stage 1 and Stage 2 coefficients for the minute by minute heart rate. Both coefficients indicate a positive association for the odds of moving and for activity count at every time t. Figure 4b indicates that one unit of increased heart rate is associated to greater odds of being active at night and earlier morning compared to day time. However, the Stage 2 coefficient in Figure 4g exhibits a more consistent day/night pattern. Figure 4c and h display the effect of age as a function of time during the day for the Stage 1 and Stage 2 models. Together, they indicate that older individuals are more likely to move during the night and early morning periods, though they are less likely to move after 12 p.m. If they do engage in physical activity then their activity level is, on average, lower in the afternoon and evening (12 p.m–22 p.m). There is also a large increase of the negative effect around 6 p.m in panel 4h, which suggests that the largest reduction in activity level for older individuals happens in late afternoon. Results indicate that physical activity interventions may be more effective at increasing overall daily activity if they are targeted towards the second part of the day. Figure 4d and i illustrate the gender effect. They indicate that the odds of being active is roughly the same for men and women during the day but it is substantially higher for men during the night. In addition, when comparing active men and active women, the level of activity is consistently higher for men throughout day. Because the sex effect seems to depend only on the day or night period, we further considered two time-invariant sex effects, one for day and one for night time. Figure 5 displays the various sex effect estimates. Panel a and d show the time-varying gender effect as in Figure 4. The weighted estimation equation (panels b and e) and the GMM method (panels c and f) both yielded a negative stage 1 effect at night, roughly zero stage 1 effect at daytime and a significant stage 2 effect throughout the day; these results are consistent with our observation from Figure 5a and d. As more information across t was taken into account to estimate the time-invariant sex effect, we chose to leave it in the final model.

6. Discussion

We introduced a two-stage model for a general type subject-specific, dense time series data with excess zeros. Such data are typical in studies using wearable devices. The model describes the effect of covariates on the occurrence of events and, conditional on the fact that the event occurred, it describes the effect of covariates on the magnitude of response. A logistic regression model was introduced to account for the first stage of the model, and a log-linear model was used for the second stage of the model. While both models are relatively well known, the novel combination, the application to high density wearable computing data, and the extension of zero-inflated models to time series make our approach novel. Most importantly, such approaches are absolutely crucial to uncover the type of findings we have shown in Section 5, for generating hypothesis, and for suggesting simpler, easier to understand models.

Our scientific findings are both striking and reasonable. To our knowledge, this is the first time when the effect of covariates is separated according to probability of being active and the level of activity. Moreover, going from qualitative statements about possible associations that seem reasonable to a reader to quantifying these associations is often the difference between research and hearsay. We have shown that some covariates affect the odds of being active while others only affect the level of activity. Such separation of the covariate effect is important, as researchers may start to disentangle the “will” and “ability” of being active. Note, for example, that in-lab experiments often have a very difficult time distinguishing between two equally able individuals who have very different levels of motivation to be active. In the lab both would perform equally well. In the natural living environment things can be completely different. Ultimately, this could provide valuable information in terms of targeting

![Figure 5. Comparison of estimated coefficients of gender: as time-varying effect in (a) and (d); as time-invariant coefficient estimated via weighted estimation equation in (b) and (e); as time-invariant coefficient estimated via GMM in (c) and (f). The time-invariant coefficients were fitted separately for the nighttime (0 a.m–8 a.m) and daytime (otherwise). Solid and dotted curves depict LOWESS smoothed coefficients of the Stage 1 and Stage 2 model, respectively. The light gray shadows surrounding the estimated coefficients stand for pointwise bootstrapped 95% confidence bands.](image)
interventions and understanding the complex nature of interactions between physiological and psychological determinants of activity and health. Our work has laid a foundation for more systematic ways of analyzing wearable computing data in the future.

Our method has several limitations that could be further addressed in future studies. First, we did not assume independence across t because the two-stage model is a marginal model which treats correlations across t as nuisance parameters. In the future, it would be of great interest to develop statistical techniques that could take advantage of, for example, local correlations from repeated measurements (across t) to improve estimation efficiency. Second, we only used one day of accelerometer data within each multiple-day visit. An important extension would be to develop methods that take into account the correlation structure of physical activity profiles across several days within each visit. Third, we estimated each time-varying coefficient at every t and smoothed them afterwards. An alternative way could be to introduce smoothing directly during the estimation. For example, a set of q-dimensional B-spline basis functions might be used to effectively reduce the number of parameters for one covariate from T to q, where $q \ll T$ is the number of parameters of the spline. Moreover, one could use periodic splines to better capture the periodic behavior of coefficients and ensure that the same value is estimated at the start (0 a.m) and end (24 p.m) of the day. This may further reduce the standard error of time-varying coefficients close to the middle of the night.

7. Supplementary Materials

Web Appendix A, referenced in Section 3, is available with this article at the Biometrics website on Wiley Online Library. A sample R code implementing the two-stage model with a sample data is also available at the Biometrics website on Wiley Online Library.

ACKNOWLEDGEMENT

The Baltimore Longitudinal Study of Aging is funded by the Intramural Research Program of the National Institute on Aging.

REFERENCES

Received July 2016. Revised August 2017. Accepted August 2017.